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1.2 MATHEMATICAL INDUCTION

If a flight of stairs is designed so that falling off any step inevitably leads to falling off the

next, then falling off the first step is a sure way to end up at the bottom. Crudely expressed,

this is the essence of the principle of mathematical induction: If the truth of a statement

depending on a given integer n implies the truth of the corresponding statement with n

replaced by nC 1, then the statement is true for all positive integers n if it is true for n D 1.

Although you have probably studied this principle before, it is so important that it merits

careful review here.

Peano’s Postulates and Induction

The rigorous construction of the real number system starts with a set N of undefined ele-

ments called natural numbers, with the following properties.
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(A) N is nonempty.

(B) Associated with each natural number n there is a unique natural number n0 called

the successor of n.

(C) There is a natural number n that is not the successor of any natural number.

(D) Distinct natural numbers have distinct successors; that is, if n ¤ m, then n0 ¤ m0.

(E) The only subset of N that contains n and the successors of all its elements is N

itself.

These axioms are known as Peano’s postulates. The real numbers can be constructed

from the natural numbers by definitions and arguments based on them. This is a formidable

task that we will not undertake. We mention it to show how little you need to start with to

construct the reals and, more important, to draw attention to postulate (E), which is the

basis for the principle of mathematical induction.

It can be shown that the positive integers form a subset of the reals that satisfies Peano’s

postulates (with n D 1 and n0 D nC 1), and it is customary to regard the positive integers

and the natural numbers as identical. From this point of view, the principle of mathematical

induction is basically a restatement of postulate (E).

Theorem 1.2.1 (Principle of Mathematical Induction) Let P1; P2;. . . ;

Pn;

. . . be propositions; one for each positive integer; such that

(a) P1 is trueI
(b) for each positive integer n; Pn implies PnC1:

Then Pn is true for each positive integer n:

Proof Let

M D
˚
n
ˇ̌
n 2 N and Pn is true

	
:

From (a), 1 2 M, and from (b), n C 1 2 M whenever n 2 M. Therefore, M D N, by

postulate (E).

Example 1.2.1 Let Pn be the proposition that

1C 2C � � � C n D n.nC 1/
2

: (1)

Then P1 is the proposition that 1 D 1, which is certainly true. If Pn is true, then adding

nC 1 to both sides of (1) yields

.1C 2C � � � C n/C .nC 1/D
n.nC 1/

2
C .nC 1/

D .nC 1/
�n
2
C 1

�

D
.nC 1/.nC 2/

2
;

or

1C 2C � � � C .nC 1/D .nC 1/.nC 2/
2

;
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which is PnC1 , since it has the form of (1), with n replaced by nC 1. Hence, Pn implies

PnC1, so (1) is true for all n, by Theorem 1.2.1.

A proof based on Theorem 1.2.1 is an induction proof , or proof by induction. The

assumption that Pn is true is the induction assumption. (Theorem 1.2.3 permits a kind of

induction proof in which the induction assumption takes a different form.)

Induction, by definition, can be used only to verify results conjectured by other means.

Thus, in Example 1.2.1 we did not use induction to find the sum

sn D 1C 2C � � � C nI (2)

rather, we verified that

sn D
n.nC 1/

2
: (3)

How you guess what to prove by induction depends on the problem and your approach to

it. For example, (3) might be conjectured after observing that

s1 D 1 D
1 � 2
2
; s2 D 3 D

2 � 3
2
; s3 D 6 D

4 � 3
2
:

However, this requires sufficient insight to recognize that these results are of the form (3)

for n D 1, 2, and 3. Although it is easy to prove (3) by induction once it has been conjec-

tured, induction is not the most efficient way to find sn, which can be obtained quickly by

rewriting (2) as

sn D nC .n � 1/C � � � C 1
and adding this to (2) to obtain

2sn D ŒnC 1�C Œ.n � 1/C 2�C � � � C Œ1C n�:

There are n bracketed expressions on the right, and the terms in each add up to n C 1;

hence,

2sn D n.nC 1/;
which yields (3).

The next two examples deal with problems for which induction is a natural and efficient

method of solution.

Example 1.2.2 Let a1 D 1 and

anC1 D
1

nC 1
an; n � 1 (4)

(we say that an is defined inductively), and suppose that we wish to find an explicit formula

for an. By considering n D 1, 2, and 3, we find that

a1 D
1

1
; a2 D

1

1 � 2 ; and a3 D
1

1 � 2 � 3 ;
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and therefore we conjecture that

an D
1

nŠ
: (5)

This is given for n D 1. If we assume it is true for some n, substituting it into (4) yields

anC1 D
1

nC 1
1

nŠ
D 1

.nC 1/Š
;

which is (5) with n replaced by nC 1. Therefore, (5) is true for every positive integer n, by

Theorem 1.2.1.

Example 1.2.3 For each nonnegative integer n, let xn be a real number and suppose

that

jxnC1 � xnj � r jxn � xn�1j; n � 1; (6)

where r is a fixed positive number. By considering (6) for n D 1, 2, and 3, we find that

jx2 � x1j � r jx1 � x0j;
jx3 � x2j � r jx2 � x1j � r2jx1 � x0j;
jx4 � x3j � r jx3 � x2j � r3jx1 � x0j:

Therefore, we conjecture that

jxn � xn�1j � rn�1jx1 � x0j if n � 1: (7)

This is trivial for n D 1. If it is true for some n, then (6) and (7) imply that

jxnC1 � xnj � r.rn�1jx1 � x0j/; so jxnC1 � xnj � rnjx1 � x0j;

which is proposition (7) with n replaced by n C 1. Hence, (7) is true for every positive

integer n, by Theorem 1.2.1.

The major effort in an induction proof (after P1, P2, . . . , Pn, . . . have been formulated)

is usually directed toward showing that Pn impliesPnC1. However, it is important to verify

P1, since Pn may imply PnC1 even if some or all of the propositions P1, P2, . . . , Pn, . . .

are false.

Example 1.2.4 Let Pn be the proposition that 2n � 1 is divisible by 2. If Pn is true

then PnC1 is also, since

2nC 1 D .2n � 1/C 2:

However, we cannot conclude that Pn is true for n � 1. In fact, Pn is false for every n.

The following formulation of the principle of mathematical induction permits us to start

induction proofs with an arbitrary integer, rather than 1, as required in Theorem 1.2.1.
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Theorem 1.2.2 Let n0 be any integer .positive; negative; or zero/: Let Pn0
; Pn0C1;

. . . ; Pn; . . . be propositions; one for each integer n � n0; such that

(a) Pn0
is true I

(b) for each integer n � n0; Pn implies PnC1:

Then Pn is true for every integer n � n0:

Proof For m � 1, let Qm be the proposition defined by Qm D PmCn0�1. Then Q1 D
Pn0

is true by (a). If m � 1 and Qm D PmCn0�1 is true, then QmC1 D PmCn0
is true by

(b) with n replaced bymC n0� 1. Therefore, Qm is true for allm � 1 by Theorem 1.2.1

with P replaced by Q and n replaced by m. This is equivalent to the statement that Pn is

true for all n � n0.

Example 1.2.5 Consider the propositionPn that

3nC 16 > 0:

If Pn is true, then so is PnC1, since

3.nC 1/C 16D 3nC 3C 16
D .3nC 16/C 3 > 0C 3 (by the induction assumption)

> 0:

The smallest n0 for which Pn0
is true is n0 D �5. Hence, Pn is true for n � �5, by

Theorem 1.2.2.

Example 1.2.6 Let Pn be the proposition that

nŠ � 3n > 0:

If Pn is true, then

.nC 1/Š � 3nC1 D nŠ.nC 1/� 3nC1

> 3n.nC 1/ � 3nC1 (by the induction assumption)

D 3n.n � 2/:

Therefore, Pn implies PnC1 if n > 2. By trial and error, n0 D 7 is the smallest integer

such that Pn0
is true; hence, Pn is true for n � 7, by Theorem 1.2.2.

The next theorem is a useful consequence of the principle of mathematical induction.

Theorem 1.2.3 Let n0 be any integer .positive; negative; or zero/: Let Pn0
; Pn0C1;. . . ;

Pn; . . . be propositions; one for each integer n � n0; such that

(a) Pn0
is true I

(b) for n � n0; PnC1 is true if Pn0
; Pn0C1;. . . ; Pn are all true.

Then Pn is true for n � n0:
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Proof For n � n0, letQn be the proposition that Pn0
, Pn0C1, . . . , Pn are all true. Then

Qn0
is true by (a). Since Qn implies PnC1 by (b), and QnC1 is true if Qn and Pn are

both true, Theorem 1.2.2 implies that Qn is true for all n � n0. Therefore, Pn is true for

all n � n0.

Example 1.2.7 An integer p > 1 is a prime if it cannot be factored as p D rs where

r and s are integers and 1 < r , s < p. Thus, 2, 3, 5, 7, and 11 are primes, and, although 4,

6, 8, 9, and 10 are not, they are products of primes:

4 D 2 � 2; 6 D 2 � 3; 8 D 2 � 2 � 2; 9 D 3 � 3; 10 D 2 � 5:

These observations suggest that each integer n � 2 is a prime or a product of primes. Let

this proposition be Pn. Then P2 is true, but neither Theorem 1.2.1 nor Theorem 1.2.2

apply, since Pn does not imply PnC1 in any obvious way. (For example, it is not evident

from 24 D 2 � 2 � 2 � 3 that 25 is a product of primes.) However, Theorem 1.2.3 yields the

stated result, as follows. Suppose that n � 2 and P2, . . . , Pn are true. Either n C 1 is a

prime or

nC 1 D rs; (8)

where r and s are integers and 1 < r , s < n, so Pr and Ps are true by assumption. Hence,

r and s are primes or products of primes and (8) implies that nC 1 is a product of primes.

We have now proved PnC1 (that nC 1 is a prime or a product of primes). Therefore, Pn is

true for all n � 2, by Theorem 1.2.3.


