10 Chapter 1 The Real Numbers

1.2 MATHEMATICAL INDUCTION

If a flight of stairs is designed so that falling off any step inevitably leads to falling off the
next, then falling off the first step is a sure way to end up at the bottom. Crudely expressed,
this is the essence of the principle of mathematical induction: If the truth of a statement
depending on a given integer n implies the truth of the corresponding statement with n
replaced by n + 1, then the statement is true for all positive integers n if it is true forn = 1.
Although you have probably studied this principle before, it is so important that it merits
careful review here.

Peano’s Postulates and Induction

The rigorous construction of the real number system starts with a set N of undefined ele-
ments called natural numbers, with the following properties.
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(A) Nisnonempty.

(B) Associated with each natural number 7 there is a unique natural number n’ called
the successor of n.

(C) There is a natural number 7 that is not the successor of any natural number.

(D) Distinct natural numbers have distinct successors; that is, if n # m, then n’ # m’.

(E) The only subset of N that contains 77 and the successors of all its elements is N
itself.

These axioms are known as Peano’s postulates. The real numbers can be constructed
from the natural numbers by definitions and arguments based on them. This is a formidable
task that we will not undertake. We mention it to show how little you need to start with to
construct the reals and, more important, to draw attention to postulate (E), which is the
basis for the principle of mathematical induction.

It can be shown that the positive integers form a subset of the reals that satisfies Peano’s
postulates (with7 = 1 and n’ = n + 1), and it is customary to regard the positive integers
and the natural numbers as identical. From this point of view, the principle of mathematical
induction is basically a restatement of postulate (E).

Theorem 1.2.1 (Principle of Mathematical Induction) Let Py, Ps,...,
Pna
... be propositions, one for each positive integer, such that

(a) Py is true;
(b) for each positive integer n, Py, implies Ppy1.
Then P, is true for each positive integer n.
Proof Let
M = {n|n € Nand P, istrue}.

From (a), 1 € M, and from (b), n + 1 € M whenever n € M. Therefore, Ml = N, by
postulate (E). a

Example 1.2.1 Let P, be the proposition that

nn+1)
—2 M

Then P; is the proposition that 1 = 1, which is certainly true. If P, is true, then adding
n + 1 to both sides of (1) yields

14+2+-+n=

n(n+1)
2
:(n+1)(%+1)
_(n+ DM +2)
D —

(1424 +m)+m+1)= +@+1)

or
n+Dn+2)

1+24+@m+1)= 3 :
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which is P, 41, since it has the form of (1), with n replaced by n 4+ 1. Hence, P, implies
P, 41, s0 (1) is true for all n, by Theorem 1.2.1. ]

A proof based on Theorem 1.2.1 is an induction proof, or proof by induction. The
assumption that P, is true is the induction assumption. (Theorem 1.2.3 permits a kind of
induction proof in which the induction assumption takes a different form.)

Induction, by definition, can be used only to verify results conjectured by other means.
Thus, in Example 1.2.1 we did not use induction to find the sum

Sp=14+2+---+n; 2)
rather, we verified that
nn+1)
Sw = (T 3)

How you guess what to prove by induction depends on the problem and your approach to
it. For example, (3) might be conjectured after observing that
_ 23 4.3

1.2
Sl:l:T’ S2=3 T, S3=6=T.
However, this requires sufficient insight to recognize that these results are of the form (3)
forn = 1, 2, and 3. Although it is easy to prove (3) by induction once it has been conjec-
tured, induction is not the most efficient way to find s,, which can be obtained quickly by
rewriting (2) as
Sp=n+m—-1)+---+1

and adding this to (2) to obtain
2sp=[n+1]+[m—-1)+2]+---+[1+n].

There are n bracketed expressions on the right, and the terms in each add up to n + 1;
hence,

25, =nn + 1),
which yields (3).

The next two examples deal with problems for which induction is a natural and efficient
method of solution.

Example 1.2.2 Leta; = 1 and

1

—a,, > 1 4
n+1an n> 4

an+1 =
(we say that a, is defined inductively), and suppose that we wish to find an explicit formula
for a,. By considering n = 1, 2, and 3, we find that
1 1 1

= — = d =
ai 1 az 1.2 and as 1.2.3
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and therefore we conjecture that

1
an = &)

_n—!.

This is given for n = 1. If we assume it is true for some », substituting it into (4) yields

1 1 1

:n+1n_!_(n+l)!’

an+1

which is (5) with n replaced by n 4 1. Therefore, (5) is true for every positive integer n, by
Theorem 1.2.1. [ ]

Example 1.2.3 For each nonnegative integer n, let x, be a real number and suppose
that
|Xnt1 — Xn| < 7|xn — Xp—1], n>1, (6)

where r is a fixed positive number. By considering (6) for n = 1, 2, and 3, we find that

lx2 — x1| < rl|x1 — Xol.
X3 — x2| < rlxz — x1] < r?x; — xol,
|xa — x3| < 7lxs — x2| < 7r3|x1 — x0l.

Therefore, we conjecture that
| = xn—1] < 7" Mg —xo| if n =1 (7)
This is trivial for n = 1. If it is true for some #n, then (6) and (7) imply that
|Xnt1 = xal < 7" Hxr = Xol). S0 |Xny1 — Xn| < r"|x1— xol,

which is proposition (7) with n replaced by n + 1. Hence, (7) is true for every positive
integer n, by Theorem 1.2.1. [ ]

The major effort in an induction proof (after Py, P5, ..., Py, ... have been formulated)
is usually directed toward showing that P, implies P,;. However, it is important to verify
Py, since P, may imply Py, even if some or all of the propositions Py, Pa, ..., Py, ...
are false.

Example 1.2.4 Let P, be the proposition that 2n — 1 is divisible by 2. If P, is true
then P, is also, since
2n+1=02n—-1)+ 2.

However, we cannot conclude that Py, is true for n > 1. In fact, P, is false forevery n. W

The following formulation of the principle of mathematical induction permits us to start
induction proofs with an arbitrary integer, rather than 1, as required in Theorem 1.2.1.
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Theorem 1.2.2 Let ng be any integer (positive, negative, or zero). Let Pny, Pno+1,
.s Py, ... be propositions, one for each integer n > ng, such that

(a) Py, is true;
(b) for each integer n > ng, P, implies Ppy1.

Then P, is true for every integer n > ny.

Proof Form > 1,let Oy, be the proposition defined by Q, = Ppyno—1. Then Q1 =
Py, istrue by (). If m > 1 and Qs = Pptng—1 is true, then Qi1 = Prgn, is true by
(b) with n replaced by m + no — 1. Therefore, Q,, is true for all m > 1 by Theorem 1.2.1
with P replaced by Q and n replaced by m. This is equivalent to the statement that P, is
true for all n > ny. a

Example 1.2.5 Consider the proposition P, that
3n+16 > 0.
If P, is true, then so is P41, since

3n+1)+16=3n+3+16
= (3n + 16) + 3 > 0 + 3 (by the induction assumption)
> 0.

The smallest no for which Py, is true is n9p = —5. Hence, P, is true for n > —5, by
Theorem 1.2.2. |

Example 1.2.6 Let P, be the proposition that
n!—3">0.
If P, is true, then
(n+ D) =3"" =pin + 1) — 3" *!
> 3"(n + 1) — 3"t (by the induction assumption)
=3"(n—2).
Therefore, P, implies P,y if n > 2. By trial and error, no = 7 is the smallest integer
such that Py, is true; hence, P is true forn > 7, by Theorem 1.2.2. |

The next theorem is a useful consequence of the principle of mathematical induction.

Theorem 1.2.3 Let ng be any integer (positive, negative, or zero). Let Pny, Pno+1-- - - »
P, ... be propositions, one for each integer n > ny, such that

(a) Py, is true;
(b) forn > ng, Ppyy is true if Ppy, Png+1...., Py are all true.

Then P, is true for n > ny.
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Proof Forn > ng, let Q, be the proposition that Png, Pug+1, ..., Py are all true. Then
On, is true by (a). Since Q, implies P,y by (b), and Q41 is true if Q, and P, are
both true, Theorem 1.2.2 implies that Q,, is true for all # > ng. Therefore, P, is true for
alln > ny. a

Example 1.2.7 Aninteger p > 1is a prime if it cannot be factored as p = rs where
r and s are integersand 1 < r, s < p. Thus, 2,3, 5,7, and 11 are primes, and, although 4,
6, 8,9, and 10 are not, they are products of primes:

4=2.2, 6=2-3, 8§=2-2-2, 9=3.3, 10=2-5.

These observations suggest that each integer n > 2 is a prime or a product of primes. Let
this proposition be P,. Then P, is true, but neither Theorem 1.2.1 nor Theorem 1.2.2
apply, since P, does not imply P,4; in any obvious way. (For example, it is not evident
from24 =2 -2 -2 - 3 that 25 is a product of primes.) However, Theorem 1.2.3 yields the
stated result, as follows. Suppose that n > 2 and P,, ..., P, are true. Eithern + 1is a
prime or

n+1=rs, 8

where r and s are integers and 1 < r, s < n, so P, and Py are true by assumption. Hence,
r and s are primes or products of primes and (8) implies that n + 1 is a product of primes.
We have now proved Py (thatn + 1 is a prime or a product of primes). Therefore, Py, is
true for all n > 2, by Theorem 1.2.3. |



